Monatshefte für Chemie 116, 1221-1226 (1985)

Zur Stereochemie der Vitamin D₃-Epoxide Röntgenstrukturanalyse einer 5,6-7,8-10,19-Triepoxidverbindung*

Harald Bernhard^a, Christoph Kratky^a, Wolfgang Reischl^b und Erich Zbiral^b

^a Institut für Physikalische Chemie, Universität Graz, A-8010 Graz, Österreich
^b Institut für Organische Chemie, Universität Wien, A-1090 Wien, Österreich

(Eingegangen 2. April 1985. Angenommen 16. April 1985)

On the Stereochemistry of Vitamin D_3 Epoxides X-Ray Structure Analysis of 5,6-7,8-10,19-Trisepoxide

Complete epoxidation of vitamin D_3 with *Payne's* reagent yields exclusively a 5,6-7,8-10,19-trisepoxide. Its stereochemistry was established by single X-ray analysis of its *p*-Br-benzoate.

(Keywords: Vitamin D₃, 5,6-7,8-10,19-trisepoxide; X-ray analysis)

Vor kurzem berichteten wir im Rahmen unserer systematischen Untersuchungen zur selektiven Oxidation des Vitamin D₃ Trien-Systems¹ über die Epoxidation von Vitamin D₃ (1) mit Hilfe des *Payne* Reagens². In dieser Arbeit teilten wir auch den guten Zugang zu einem 5,6-7,8-10,19-Triepoxid Derivat von 1 mit. Wir konnten jedoch keine sichere Aussage über die Stereochemie der Oxiranringe machen. Inzwischen gelang es uns, das kristalline *p*-Brombenzoat 2 (Schmp. 134 – 136 °C, Methanol/Aceton) herzustellen, welches einer Röntgenstrukturanalyse zugänglich war. Aus Abb. 1 geht dessen 5*R*,6*R*-7*R*,8*R*-10*S* Konfiguration hervor. Bemerkenswert erscheint der hochstereoselektive Angriff des *Payne* Reagens (nur von einer Seite her) auf das Vitamin D₃ Triensystem.

Zusammenfassend bestätigen die beiden vorliegenden Röntgenstrukturanalysen die Berechtigung der Annahme einer "template"-Kontrolle

^{*} Herrn Prof. Dr. Dr. h. c. K. Kratzl mit den besten Wünschen zu seinem 70. Geburtstag.

durch die 3-OH-Gruppe für die Einbringung der ersten Oxiranfunktion in Position $5-6^1$. Die stereochemische Kontrolle der Zweitepoxidation erfolgt durch die C-18 Methylgruppe. Modellstudien am Des-A,B-8methylencholestan unterstreichen diese Auffassung³. Die stereochemische Relation der beiden schon vorhandenen Oxiranringe (vgl. Abb. 1 in Lit.³) machen die ausgeprägte Seitendifferenzierung für die Einbringung der dritten Oxiranfunktion verständlich.

Abb. 1. Stereographische Abbildung der asymmetrischen Einheit in der Kristallstruktur von 2 (die Sauerstoffatome sind zur besseren Kenntlichkeit schwarz ausgemalt)

Ganz allgemein und abschließend sei angemerkt, daß bisher nur sehr wenige Polyoxirane mit wohldefinierter Stereochemie beschrieben worden sind: Als Beispiele dafür seien das 1,2-3,4-5,6-Trianhydrohexitol⁴ und die schon seit längerer Zeit bekannten 1,2-3,4-5,6-Trianhydroinositole^{5a, b} ("Benzoltriepoxide") angeführt.

Abb. 2. Bindungslängen und Atomnumerierung (in Übereinstimmung mit jener in Lit.¹) für die Kristallstruktur von **2** (Standardabweichungen der Bindungslängen zwischen 0.007 und 0.016 Å)

Dank

H. B. und *C. K.* danken dem Fonds zur Förderung der wissenschaftlichen Forschung und dem Jubiläumsfond der Oesterreichischen Nationalbank. *W. R.* und *E. Z.* danken der Hochschuljubiläumsstiftung der Stadt Wien für finanzielle Unterstützung.

Experimenteller Teil

Röntgenstrukturanalyse von 2

Raumgruppe P 2₁, a = 9.494(1) Å, b = 12.228(2) Å, c = 13.730(3) Å, $\beta = 99.90^{\circ}(1)$, V = 1570.2 Å³, Z = 2 (C₃₄H₄₇O₅Br), $d_x = 1.302$ g cm⁻³. Der Kristall (ca. 0.3 × 0.3 × 0.25 mm) wurde bei 98 K (angezeigte Meßtempe-

Der Kristall (ca. $0.3 \times 0.3 \times 0.25$ mm) wurde bei 98 K (angezeigte Meßtemperatur, Nonius Tieftemperatureinrichtung) auf einem modifizierten Stoe-4-Kreisdiffraktometer (MoK_a-Strahlung, Graphitmonochromator, $\lambda = 0.71069$ Å) vermessen: Zellachsen durch "least-squares"-Verfeinerung von 42 Reflexpositionen (7° < 2 θ < 20°), Datensammlung mit ω/θ -scan, scan-Breite 1.6°, variable Scange-

1223

⁸² Monatshefte für Chemie, Vol. 116/10

Tabelle 1. Atomkoordinaten $(\cdot 10^4)$ und isotrope, bzw. äquivalente isotrope (Br 1, C33, C38, C39) U-Werte (in Å²) der Nichtwasserstoffatome für die Kristallstruktur von 2 (Atombezeichnungen wie in Abb. 2). Die Form des isotropen Temperaturfaktors ist: $T = \exp(-8\pi^2 U \sin^2 \theta / \lambda^2)$, der äquivalent-isotrope Temperaturkoeffizient wurde als ein Drittel der Spur des orthogonalisierten U_{ij} Tensors berechnet

Atom	X/a		Y/t	Y/Ъ		Z/c		Ui so	
Br –1	-7150	1	-3322	1	-2699	1	269	3	
C-2	-6589	5	-3332	9	-3957	4	211	12	
C-3	-6506	8	-2339	8	-4419	7	260	21	
C-4	-6092	8	-2329	7	5356	6	197	19	
C-5	-5765	5	-3282	8	-5797	3	167	11	
C6	-5848	8	-4279	8	-5298	6	227	20	
C-7	-6280	8	-4306	7	-4395	6	214	19	
C8	-5325	5	-3319	9	-6782	4	195	12	
09	-5381	5	-2298	4	-7189	3	191	11	
0-10	-4978	5	-4129	4	-7174	3	199	12	
C-11	-5086	7	-2183	6	-8190	4	170	14	
C-12	-6406	7	-2487	6	-8917	5	223	15	
C-13	-6192	7	-2215	5	-9974	4	167	14	
C-14	-5836	6	-1031	5	-10061	4	147	' 14	
C-15	-4562	6	-665	5	-9325	4	141	13	
C–16	-4683	7	-98 9	6	-8266	4	154	14	
C-17	-6357	7	-382	6	-10946	5	218	16	
0-18	-4040	4	413	4	-9427	3	191	10	
C-19	-3122	7	-510	6	-9580	4	173	14	
C20	-2810	6	-600	5	-10603	4	148	13	
0-21	-1619	4	80	4	-10784	3	202	2 10	
C-22	-1471	6	-1097	5	-10809	4	164	14	
C-23	-350	7	-1598	6	-10011	5	182	2 14	
C-24	-475	7	-2844	6	-9986	5	248	16	
C-25	493	6	-3353	8	-11008	4	196	5 13	
C26	-1639	6	-2864	5	-11808	4	140) 14	
C-27	-1383	7	-1602	6	-11793	5	166	3 14	
C-28	-3143	7	-3132	7	-11600	5	199) 15	
C-29	-2358	7	-1187	6	-12733	5	214	l 15	
C-30	-2285	8	-2131	6	-13488	5	222	2 18	
C-31	-1522	6	-3123	6	-12895	4	149	9 13	
C-32	-2083	7	-4224	6	-13332	5	170	3 17	
C-33	-1387	8	-5218	7	-12750	5	304	46	
C-34	-1926	7	-4328	7	-14434	5	232	2 16	
C-35	-384	8	-4224	7	-14636	6	31	5 18	
C-36	-246	9	-4402	7	-15723	6	32	18	
C-37	-1094	9	-3644	6	-16462	6	33(3 21	
C-38	-748	12	-3895	12	-17491	9	56	80 8	
C-39	-870	14	-2435	11	-16238	10	72	9 87	
0-40	-7053	4	-296	4	-10083	3	23	9 11	

Tabelle 2. Atomkoordinatioen $(\cdot 10^3)$ und isotrope Temperaturfaktoren (in Å²) der Wasserstoffatome für die Kristallstruktur von **2**

Atom	X/a		Y/b		Z/e		Uiso	
H3	-673	7	-162	7	-411	5	37	22
H-4	-613	8	-174	7	564	6	26	25
H-6	-560	7	-489	6	-560	5	0	18
H-7	-635	7	-501	6	~403	5	28	21
H-11	-430	6	-264	5	-825	4	13	16
H-121	-662	6	-329	9	887	4	28	16
H-122	-728	6	-196	5	869	4	4	15
H–131	-725	6	-233	5	-1050	4	31	17
H-132	-555	8	-260	7	-1004	6	20	25
H 161	-546	5	57	4	-813	4	0	14
H-162	-387	6	-81	5	-780	4	13	15
H-171	-689	6	-69	5	-1150	4	18	16
H-172	593	7	29	7	-1105	5	27	22
H–19	-221	5	-60	4	-903	4	0	13
H-20	-368	6	-58	5	-1114	4	11	15
H-231	61	5	-139	4	-1021	4	0	13
H-232	-38	5	-127	4	-932	4	7	14
H-241	-145	5	-305	6	-977	4	23	16
H-242	37	6	-313	6	-952	4	31	18
H-251	44	5	-312	5	-1121	3	12	14
H-252	-59	8	-403	8	-1086	6	56	29
H-27	-38	7	-154	6	-1198	5	29	19
H-281	-384	5	-280	4	-1212	4	0	13
H-282	-327	6	-281	5	-1098	4	0	16
H-283	-347	9	-383	8	-1159	7	41	27
H-291	-195	8	-48	6	-1300	5	34	21
H-292	-342	7	-i06	6	-1273	5	35	19
H-301	-332	5	-238	4	-1389	4	0	13
H-302	-181	6	-182	5	-1406	4	7	16
H-31	-48	7	-313	8	-1292	5	39	22
H-32	-304	6	-423	5	-1331	4	2	17
H-331	-24	7	-522	5	-1259	4	17	16
H-332	-164	9	-593	7	-1315	6	60	26
H-333	-167	7	-520	6	-1213	5	13	21
H-341	-240	6	-506	5	-1481	5	34	18
H-342	-250	6	-377	5	-1480	4	9	16
H-351	6	5	-356	4	-1442	3	0	14
H-352	15	6	-480	5	-1425	4	16	15
H-361	54	7	-517	6	-1584	5	33	20
H-362	75	8	-436	6	-1572	5	33	22
H-37	-215	7	-385	5	-1650	5	37	20
H-381	-127	13	-371	13	-1811	8	196	50
H-382	-65	9	-459	8	-1767	5	86	31
н-383	-112	12	-303	2	-1757	9	60	40
H-391	36	10	-247	7	-1597	6	96	25
н-392	-138	ö	-190	7	-1690	U 1 m	65	24
п-393	-14%	τD	217	17	-1085	12	317	70

1225

schwindigkeit für alle Reflexe mit $2\theta < 50^{\circ}$ (sin $\theta/2 < 0.595$). Nach jeweils 100 Meßpunkten 3 Standardreflexe, maximale Intensitätsschwankungen $\pm 3\%$. 3 145 beobachtete, 2911 symmetrieunabhängige, 2 247 signifikante Reflexe [$F_{obs} > 3\sigma$ (F_{obs})]. Die Struktur ist weitgehend isomorph mit jener des entsprechenden Diepoxids (Verbindung **3b** in Lit.¹), dessen Atomkoordinaten als Ausgangspunkt für die "least-squares"-Verfeinerung verwendet wurden: Brom und die Methyl-kohlenstoffe wurden mit anisotropen Temperaturfaktoren verfeinert. Die Bindungslänge C-38 – H-383 wurde auf 1.08 Å fixiert.

R = 0.044, R = 0.038, 2247 Observable, 369 Parameter, Gewichtssystem $1.1483/[\sigma^2(F_i) + 0.000164F_i^2], \sigma(C-C) \simeq 0.01$ Å.

Höchstes Maximum in der nachfolgenden Differenz-Fourier-Synthese 0.4 eÅ⁻³. Verwendete Rechenprogramme: X-RAY⁶, SHELX⁷, PLUTO⁸.

Literatur

- ¹ Reischl W., Bernhard H., Kratky C., Zbiral E., Monatsh. Chem. 116, 831 (1985).
- ² Payne G. B., Demig P. H., Williams P. H., J. Org. Chem. 26, 659 (1961); Payne G. P., Tetrahedron 18, 763 (1962).
- ³ Reischl W., Zbiral E., unveröffentlichte Ergebnisse.
- ⁴ Koell P., Oeltung M., Kopf J., Angew. Chem. 96, 222 (1984).
- ⁵ Vogel E., Altenbach H.-J., Sommerfeld C.-D., Angew. Chem. 84, 986 (1972); Schwesinger R., Prinzbach H., Angew. Chem. 84, 990 (1972).
- ⁶ Steward G. M. (Hrsg.), The X-Ray system-version 1976. Technical Report TR-466, CSS, University of Maryland, U.S.A.
- ⁷ Sheldrick G. M., SHELX 76, a program for crystal structure determination, University of Cambridge, England.
- ⁸ *Motherwell S.*, PLUTO, a program for plotting molecular and crystal structures, Cambridge Crystallographic Data Center, England.